SCYON Abstract

Received on July 16 2007

A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution

AuthorsHolger Baumgardt and Pavel Kroupa
AffiliationAIfA, University of Bonn
Accepted byMonthly Notices of the Royal Astronomical Society
Contactholger@astro.uni-bonn.de
URLhttp://de.arxiv.org/abs/0707.1944
Links

Abstract

We have carried out a large set of N-body simulations studying the effect of residual-gas expulsion on the survival rate and final properties of star clusters. We have varied the star formation efficiency, gas expulsion timescale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. The complete data of these simulations is made available on the Internet. Our simulations show that cluster sizes, bound mass fraction and velocity profile are strongly influenced by the details of the gas expulsion. Although star clusters can survive star formation efficiencies as low as 10% if the tidal field is weak and the gas is removed only slowly, our simulations indicate that most star clusters are destroyed or suffer dramatic loss of stars during the gas removal phase. Surviving clusters have typically expanded by a factor 3 or 4 due to gas removal, implying that star clusters formed more concentrated than as we see them today. Maximum expansion factors seen in our runs are around 10. If gas is removed on timescales smaller than the initial crossing time, star clusters acquire strongly radially anisotropic velocity dispersions outside their half-mass radii. Observed velocity profiles of star clusters can therefore be used as a constraint on the physics of cluster formation.